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Statistics 1 (6683) – Principal Examiner’s report 
 

General introduction  

The question paper proved accessible to all the candidates but questions 3, 5 and 6 
provided plenty of discrimination for the top grades. 
 

Question 1 

This proved to be a good opening question with nearly all the students making some 
progress.  Part (a) was answered very well but in part (b), few could work out the effect 
of the coding on Sss although more were successful with Sst. Some reminded us that 
coding had no effect on the correlation coefficient and assumed that this must also apply 
to these values as well, whereas others embarked on long, and usually totally incorrect, 
calculations having missed the significance of the instruction to “write down…”.   
 
In part (c) most tried using a correct formula and many, quite sensibly, used the variables 
w and t but often their values of Sss and Sst gave an answer of |r| > 1 and this also meant 
they lost then chance of scoring in part (d).  It is disappointing that many students still 
don’t seem to realise that |r| cannot be greater than 1 and use this fact to try and fix their 
previous errors.  Those who had a valid answer for r were usually able to give a suitable 
comment in part (d) though some failed to emphasise that it was the magnitude of the 
correlation, rather than the sign, that was significant. Part (e) was often fully correct but 

common errors were to use 
49

50
b


  presumably caused by a failure to identify the 

response and explanatory variables correctly.  The usual loss of a mark for accuracy 
occurred where students prematurely rounded their gradient.  A few students still don’t 
appreciate that values of a and b given as fractions are inappropriate but it was 
encouraging to see very few cases of students giving their final equation in terms of x and 
y rather than t and w as required.  There were many correct responses to part (f),  but some 
did not spot the simple link to part (e) and attempted to calculate a new regression 
equation usually with little success.  The responses to part (g) were disappointing with 
many simply substituting t = 1 into their equation rather than giving a suitable 
interpretation of the gradient.  Others failed to give a full enough interpretation and simply 
said “a decrease” whilst other were confused over the units and were happy to quote a 
loss of 6.5p per week. 
 
  



 

Question 2 

Most could find the correct width in part (a) but the height calculation is still causing 
problems.  The common error was to compare frequencies rather than frequency densities 
and an incorrect answer of 3 was fairly common.  Part (b) was answered well by the 
majority of students with very few cases of students using (n + 1) and most choosing to 
work upwards from 45 rather than down from 50.   The interpolation technique is 
understood but there were still a number of errors made in determining the appropriate 
class boundaries with 44.5 being used instead of 45 quite often.   
 
As expected, part (c) was answered very well by the majority of students but there were 
still some who simply added the 5 midpoints and divided by 5 which is disappointing for 
students at this level.  Many students didn’t seem to be familiar with the convention that 
answers involving money should be given to 2 decimal places and some lost a mark for 
simply writing down £49.1 without any correct working being seen.  There were many 
fully correct answers to part (d) as well, but some forgot to use the square root and a 
number lost accuracy by using 49.1 or the mean rather than the full expression.   
 
In part (e), all that was required was a simple comparison of Q2 with x  but a number 
used a formula for skewness and that was, of course fine.  The expected conclusion was 
that there was very little skewness since Q2 x  but many concluded that since x > Q2 

there was positive skew and this was allowed. The idea of using a normal distribution to 
model these data being an acceptable approach because there was only a little skewness 
was not appreciated by many students who simply trotted out a standard response that a 
normal was not a suitable model because the data was skew.  Students should be 
encouraged to consider the magnitude of the skewness and realise that, with such a small 
amount of skew, to model the situation with a normal distribution may be a reasonable 
thing to do.  Some students completely missed the need to reference part (e) in their 
answer to part (f) and simply compared their mean and standard deviation to Rika’s values 
of £50 and £10.  The final part (g) defeated many students despite being a fairly standard 
normal distribution question, presumably because it was not part of the question on the 
normal distribution.  The three common errors were: standardising with their mean and 

standard deviation rather than the given values of 50 and 10, equating 
50

10

c 
 to a 

probability rather than a z-value or using 0.84 rather than 0.8416 from the percentage 
points tables.   
 
  



 

Question 3 

Although over a quarter of the students scored full marks, clearly reasoned and fully 
correct answers to this question were relatively rare.  Most started correctly in part (a) 
and the correct values for p and q were often seen.  Frequently there followed in parts (b) 
and (c) a string of equations linking r, s and t often accompanied by failed attempts to 
solve them correctly.  The most common error though was to assume that A and B were 
independent which quickly gave an incorrect value for s and an easy route to find wrong 
answers for r and t.  This also meant that any argument they used in (d) was flawed and 
marks were lost here too.   
 
In part (d) those who had a correct (or nearly correct) Venn diagram were familiar with 
the two approaches to determining independence but by far the most popular was to 
compare P( ) P( ) 0.5 0.6 0.3A B    with P( ) 0.28A B s   and conclude that A and 

B were not independent.  In the final part (e), most realised that a ratio of probabilities 
was required and many had a suitable denominator from P(A) + P(C) or their  
(r + s + p + q) but the numerator was often incorrect.  A common error was simply to use 
P(B) and many also used P( ) P( )B A C   and a few lost the final accuracy mark for 

simplifying 
0.43

0.75
 to 0.57. 

 

Question 4 

This question clearly divided the students into two groups: those who understood the 
concept of the cumulative distribution function and in particular the difference between 
P(X = x) and F(x) and those who did not.  Nearly 40 % gained full marks here but over 
15% scored zero.  Part (a) was often fully correct though a common error was to have  

b = 1
6

 and c = 1
3

 but these students often picked up a follow through mark for d and 

sometimes the mark in part (b) as well.   
 
Part (b) proved quite challenging with 30% of students scoring all the marks in part (a) 
but then failing to get part (b).  The problem seemed to be students not realising that  
P(X 2 = 1) meant P(X = 1 or X = – 1 ) and common incorrect answers were 1

16  from 

   22 1
4P( 1)X    or 1

12
 from P( 1) P( 1)X X     rather than P( 1) P( 1)X X    . 

 
  



 

Question 5 

This was the most challenging question on the paper.  Part (a) was a simple use of the 
normal distribution and most students scored full marks here.  A sizeable group though 
standardised correctly but then confused the two tables and wrote down the z-value 
corresponding to a probability of 0.4 (i.e. 0.2533) and used this as their probability.  There 
were also a number of cases of students miscopying the tables and 0.3466 instead of 

0.3446 was seen quite frequently.  The usual errors of standardising with 52 or 5 were 
very rare though a number were still unsure whether or not to subtract their tables figure 
from 1.   
 
In part (b), few wrote down a conditional probability statement but launched straight into 
a ratio of probabilities.  This was fine if the ratio was correct but, whilst most had  
P(T > 15) = 0.7257 on the denominator, those who thought the numerator was simply  
P(T > 15)P(T > 20) would score no marks.  Those who did have a correct numerator 
were often able to score all of the marks here.  Part (c) proved too demanding for most 
students and only a few of those who eventually arrived at a correct answer did so from a 
clearly argued solution.  Some students assumed that linear interpolation was required 
and made no headway.  Very few started by considering a conditional probability but 
some did realise that they required the value d such that P(T > d) = 0.50.7257 and some 
then realised they were trying to find d from P(T < d) = 0.63715.  Those who got this far 
usually realised that they needed to use a z-value of 0.35, though some did not know how 
to deal with a probability in-between two values in the tables and simply took the 
midpoint, and were able to form a correct equation and arrive at the correct answer but 
under 10% scored full marks on this question. 
 
  



 

Question 6 

Although the final part of this question was quite challenging most students were able to 
get started and most scored at least half marks.  Parts (a) and (b) were straightforward and 
nearly all scored full marks here.  A small minority confused E(X 2) with Var(X) and some 
forgot to square the E(X) term when finding the variance.  Part (c) should have been 
straightforward but some students ignored the instruction to form a linear equation in p 

and simply substituted 1 2
3 3 and p q   into the formula for E(Y) but gained no marks.  

Some used p + q = 1 and started with two simultaneous equations which made the 
question a little more complicated than intended.   
 
Part (d) was usually answered correctly but some were incorrectly using a random 
variable X here.  Many were less successful in part (e) because they failed to present a 

clearly argued “show that” solution.  Simply multiplying 1 1
3 4  was not sufficient.  We 

required some indication that the event S = 30 was achieved when X = 6 and Y = 5 as well 

as the multiplication of   1 1
3 4 .  Many students made no attempt at the remainder of the 

question but those who did could usually make some progress.  Those who drew up a 
distribution table in part (f) usually scored at least the first mark but there were often 
errors in P(S = 4) or P(S = 25) and sometimes extra values crept in too such as S = 0. 
Those with a correct table in (f) were usually able to find E(S) correctly although a small 
number failed to give an exact answer which we always expect for work on discrete 
random variables.  Part (h) was the most difficult part of the question.  Many students 
ignored the fact that Sam and Charlotte play the game a large number of times and 
compared individual outcomes or the probability of achieving a higher score rather than 
comparing the expected scores for each.  Some did not realise that Charlotte’s expected 
score had already been calculated in part (b) and found E(X 2) again, sometimes 
incorrectly this time, and others thought they should compare E(S) with [E(X)]2 but a very 
competent 10% of the students gave a fully correct solution to this question. 
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